Table 4 (cont.)

$\mathrm{Th}_{2} \mathrm{~N}_{2} \mathrm{Sb}$	$2 \cdot 39^{*}$	$3 \cdot 56^{*}$
$\left.\mathrm{Th}_{2} \mathrm{~N}_{1 / 2} \mathrm{O}_{1 / 2}\right)_{2} \mathrm{Sb}$	$2 \cdot 35^{*}$	$3 \cdot 49^{*}$
$\mathrm{Th}_{2} \mathrm{~N}_{2} \mathrm{Te}$	$2 \cdot 38$	$3 \cdot 54$
$\mathrm{Th}_{2} \mathrm{~N}_{2} \mathrm{Bi}$	$2 \cdot 41^{*}$	$3 \cdot 58^{*}$
$\mathrm{Th}_{2}(\mathrm{~N}, \mathrm{O})_{2} \mathrm{Bi}$ (oxygen saturated) $2 \cdot 40^{*}$	$3 \cdot 57^{*}$	

* Limits of uncertainties in bond distances are of the order of two to three times that of the compound $\mathrm{U}_{2} \mathrm{~N}_{2} \mathrm{Sb}$.

Mrs Rose Mary Boicourt assisted with measurements of X-ray diffraction films.

References

Acta Cryst. (1970). B 26, 827

Neutron Diffraction Refinement of the Crystal Structure of Potassium Copper Chloride Dihydrate, $\mathrm{K}_{2} \mathrm{CuCl}_{4} . \mathbf{2} \mathbf{H}_{2} \mathrm{O}$

By R.Chidambaram*, Q.O.Navarro, A.Garcia, Karsono Linggoatmodjo \dagger, Lin Shi-Chien \ddagger and Il-Hwan Suh§ Physics Department, Philippine Atomic Research Centre, Diliman, Quezon City, Philippines

and A. Sequeira and S. Srikanta
Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay-85, India

(Received 19 February 1969 and in revised form 7 July 1969)

Abstract

A refinement of the crystal structure of $\mathrm{K}_{2} \mathrm{CuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ (space group $P 4_{2} / m n m ; a=7 \cdot 477, c=7.935 \AA$) has been carried out using the intensities of 201 independent three-dimensional single-crystal neutron reflexions with $\sin \theta / \lambda \leq 0.57 \AA^{-1}$. The final R index on F is 0.039 . The copper atom has a distorted octahedral coordination consisting of two $\mathrm{H}_{2} \mathrm{O}$ molecules at $1.971 \AA$, two Cl atoms at $2.285 \AA$ and two Cl atoms at $2.895 \AA$. The water molecule is trigonally coordinated and forms two equivalent $\mathrm{O}-\mathrm{H}-\mathrm{-} \mathrm{Cl}$ bonds at distances of $3.116 \AA$ with $\mathrm{H}-\mathrm{O} \ldots \mathrm{Cl}$ angles of $4 \cdot 7^{\circ}$. The $\mathrm{O}-\mathrm{H}$ distance in the water molecule is $0.955 \AA$ (uncorrected for thermal motion) and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle is 109.7°.

Introduction

The crystal structure of $\mathrm{K}_{2} \mathrm{CuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ has been studied using X-rays by Hendricks \& Dickinson (1927) and Chrobak (1934) (see also Wyckoff, 1965). The heavy-atom positions have been determined approximately in these investigations. The proton magnetic resonance in a single crystal of this compound has been studied by Itoh, Kusaka, Yamagata, Kiriyama \& Ibamoto (1953) and by McGrath \& Silvidi (1961); the length and orientation of the interproton vector determined by the latter have also been used recently by El Saffar (1968) to predict the hydrogen positions.

Experimental

The preliminary analysis of the crystal structure was carried out on the basis of 53 hll intensities collected at $1.17 \AA$ from a cylindrical sample with its axis parallel

[^0]to $[01 \overline{1}]$ in the neutron diffractometer at the Philippine Research Reactor (PRR-1) near Manila. The final refinement was based on three-dimensional data collected in the neutron diffractometer 3D-FAD (Momin, Sequeira \& Chidambaram, 1969) at the CIRUS reactor in Trombay. The crystal used was a rectangular parallellepiped (weight $=46 \mathrm{mg}$) with its longest edge of 3.7 mm parallel to [$11 \overline{1}]$. A total of 201 independent reflexions were measured at $1.406 \AA$ up to $\sin \theta / \lambda=0.57 \AA^{-1}$.

The space group extinctions for $P 4_{2} / \mathrm{mnm}$ were confirmed.* Using the 2θ values of 26 reflexions, the unitcell constants were refined and found to be $a=7 \cdot 477$ (13)

[^1]Table 1. Positional and thermal parameters in $\mathrm{K}_{2} \mathrm{CuCl}_{4} .2 \mathrm{H}_{2} \mathrm{O}$
The expression for the temperature factor is
$\exp \left[-2 \pi^{2}\left(a^{* 2} U_{11} h^{2}+b^{* 2} U_{22} k^{2}+c^{* 2} U_{33} l^{2}+2 a^{*} b^{*} U_{12} h k+2 a^{*} c^{*} U_{13} h l+2 b^{*} c^{*} U_{23} k l\right)\right]$. The least-squares standard errors are given in parentheses.

Fractional coordinates ($\times 10^{4}$)

	x	y	z	U_{11}
Cu	0	0	0	$235(14)$
K	0	5000	2500	$404(26)$
$\mathrm{Cl}(1)$	$2161(3)$	x	0	$232(8)$
$\mathrm{C}(2)$	$7262(3)$	$-x$	0	$264(8)$
O	0	0	$2484(5)$	$386(23)$
H	$0739(10)$	x	$3178(6)$	$451(23)$

and $c=7.935(19) \AA$. There are two formula units in the unit cell. The linear absorption coefficient was calculated and found to be $1.56 \mathrm{~cm}^{-1}$ at $1.406 \AA$; the raw data were reduced to structure factors using the CDC3600 program DATARED (Srikanta, 1968), which includes the absorption-correction program ORABS (Wehe, Busing \& Levy, 1962) as a subroutine.

Refinement of the structure

Starting with the heavy-atom coordinates as reported by Hendricks \& Dickinson (1927) and hydrogen positions as indicated by the proton resonance work of McGrath \& Silvidi (1961), the structure was refined by conventional Fourier and least-squares techniques. The observed data $F_{o}^{\prime 2}$ were found to be suffering from secondary extinction:

$$
\frac{F_{o}^{\prime 2}}{F_{c}^{2}} \simeq\left(1-0.00155 \frac{F_{c}^{2}}{\sin 2 \theta}\right)
$$

(the reflexion most severely affected was 004 for which $F_{o}^{\prime 2} / F_{c}^{2}=0.687$ and $F_{c}^{2} / \sin 2 \theta=220$). An error analysis based on the observed structure factors F_{o}^{2} corrected for secondary extinction indicated the suitability of the following weighting scheme:

$$
\omega^{-1 / 2}=\langle | F_{o}^{2}-F_{c}^{2}| \rangle_{\mathrm{av}} \simeq 0.12+0.031 \frac{F_{c}^{2}}{\sin 2 \theta} .
$$

This scheme was used in the final stages of the refinement (on F^{2}) which converged at a discrepancy index $R_{x} \equiv\left[\sum\left|F_{o}^{x}-F_{c}^{x}\right| / \sum\left|F_{o}^{x}\right|\right]$ of 0.0396 for $x=1$. The following scattering amplitudes (in units of $10^{-12} \mathrm{~cm}$) were used up to this stage: $\mathrm{H},-0.378 ; \mathrm{Cu}, 0.79$; $\mathrm{K}, 0.35 ; \mathrm{O}, 0.577$ and $\mathrm{Cl}, 0.99$. The intensity data seemed good enough to merit a least-squares refinement of the scattering amplitudes along with other parameters. This was carried out with the scattering amplitude of H held at -0.378 (total number of parameters varied $=28$). The refinement converged at $R_{1}=$ 0.0390 and led to the following values for the other scattering amplitudes; $\mathrm{Cu}, 0.794(29) ; \mathrm{K}, 0.374(17)$; $\mathrm{O}, 0.587(19)$ and $\mathrm{Cl}, 0.961(28)$. The final discrepancy factors were as follows:

	Set 1	Set 2
$x=1$	0.039	0.030
$x=2$	0.053	0.052
Number of data	201	174

where set 1 includes all data and set 2 only the data which have $F_{o}^{2}>2 \omega^{-1 / 2}$ (in the final stages of the refinement all data with $F_{o}^{2}<2 \omega^{-1 / 2}$ and $F_{o}^{2} / \sin 2 \theta>100$ were omitted). Table 1 gives the final positional and thermal parameters and Table 2 compares the observed and calculated squared structure factors. A composite Fourier synthesis of the structure calculated using the program FORDAP (Zalkin, 1962) is presented in Fig. 1.

Discussion

Some of the interatomic distances and bond angles calculated by the program ORFFE* (Busing, Martin

[^2]\& Levy, 1964) are shown in Table 3. The distorted octahedral coordination around Cu consists of two close O , two close Cl and two farther Cl contacts. Eight

Cl neighbours, all at about $3.32 \AA$ form a distorted cube around K .

The water molecule has a lone-pair coordination of

Table 3. Interatomic distances and bond angles
The standard deviations are given in parentheses and include cell parameter errors.
(a) The Cu octahedron

$2 \times \mathrm{Cu}-\mathrm{O}$	$1.971(6) \AA$
$2 \times \mathrm{Cu}-\mathrm{Cl}(1)$	$2.285(3)$
$2 \times \mathrm{Cu}-\mathrm{Cl}(2)$	$2.895(4)$

$90.0(0)^{\circ}$
$90 \cdot 0$ (0)
$90 \cdot 0$ (0)
(b) The K polyhedron (cube)

$4 \times \mathrm{K}-\mathrm{Cl}(2)$	$3.315(4) \AA$
$4 \times \mathrm{K}-\mathrm{Cl}(1)$	$3.325(4)$

(c) The water molecule and the hydrogen bond

$\mathrm{O}-\mathrm{H}$	$0.955(6)^{*} \AA$	$\mathrm{H}-\mathrm{O}-\mathrm{H}$	$109.7(7)^{\circ}$
	$0.96(6) \dagger$		
$\mathrm{H}-\mathrm{H}$	$1.562(11)^{*}$		
	$1.580(11) \dagger$	$\mathrm{Cl}(2)--\mathrm{O}-\mathrm{Cl}(2)$	$100 \cdot 3(2)^{\circ}$
$\mathrm{O}-\mathrm{Cl}(2)$	$3.116(5)$	$\mathrm{H}-\mathrm{O}-\mathrm{Cl}(2)$	$4.7(3)$
$\mathrm{H}--\mathrm{Cl}(2)$	$2.165(6)$		

* Uncorrected for thermal motion.
\dagger Corrected for thermal motion, assuming that the hydrogen atom 'rides' on the water oxygen atom (Busing \& Levy, 1964). In calculating the 'corrected' $\mathrm{H}-\mathrm{H}$ distance, it is assumed that the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle remains unchanged.

Fig.1. The composite Fourier synthesis of $\mathrm{K}_{2} \mathrm{CuCl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. The numbers in parentheses indicate the z coordinates of the various nuclear scattering density sections. For convenience in plotting, the symmetry of the mirror plane indicated by the thick line from the top left hand corner to the bottom right-hand corner is used to show only half the contours for $\mathrm{Cu}, \mathrm{O}, \mathrm{Cl}(1)$ and $\mathrm{Cl}(2)$. The contours are at equal arbitrary intervals and the negative contours are shown by broken lines; the zero contours are omitted.
type D (Chidambaram, Sequeira \& Sikka, 1964) with the bisector of the lone pairs directed toward the divalent copper ion. There are two equivalent bent $\mathrm{O}-\mathrm{H}--\mathrm{Cl}(2)$ hydrogen bonds from the water molecule. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle of $109 \cdot 7(7)^{\circ}$ is significantly larger than the value of 104.5° in water vapour. It has been noted earlier also (Chidambaram, Sequeira \& Sikka, 1964; Sikka \& Chidambaram, 1969; Brown \& Chidambaram, 1969) that trigonally coordinated water molecules with lone pair coordination of type D show an increased $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle compared with tetrahedrally coordinated water molccules. The uncorrected $\mathrm{H}-\mathrm{H}$ distance of $1.562(11) \AA$ is less than the distance of $1.61(2) \AA$ found in the proton magnetic resonance study by McGrath \& Silvidi (1961); this follows the tendency found in other hydrates by El Saffar (1966) and also in $\mathrm{Ba}\left(\mathrm{ClO}_{3}\right)_{2} . \mathrm{H}_{2} \mathrm{O}$ (Sikka, Momin, Rajagopal \& Chidambaram, 1968) and $\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Sequeira, Srikanta \& Chidambaram, 1970).

It may be noted that the coordinates of the hydrogen atom in the asymmetric unit derived by El Saffar (1968) from the proton resonance determination of the length and orientation of the interproton vector are $0.076,0.076,0 \cdot 178$. The disagreement of the z coordinate from the parameter list of Table 1 is due to a different choice of origin (El Saffar, private communication) placing the Cu at $\left(0,0, \frac{1}{2}\right)$ rather than at the origin we have chosen following Wyckoff (1965).

The investigation was carried out as part of the IPA (India-Philippines-International Atomic Energy Agency) Project. We are grateful to Dr R. Ramanna, Commissioner P. G. Afable, Dr P. K. Iyengar and Dr L. D. Ibe for their interest and encouragement.

References

Brown, G. M. \& Chidambaram, R. (1969). Acta Cryst. B25, 676.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE, A Fortran Crystallographic Function and Error Program. Oak Ridge National Laboratory Report ORNL-TM-306.
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.
Chidambaram, R., Sequeira, A. \& Sikka, S.. K (1964). J. Chem. Phys. 41, 3616.
Сhrobak, J. (1934). Z. Kristallogr. 88, 35.
El Saffar, Z. M. (1966). J. Chem. Phys. 45, 4643.
El Saffar, Z. M. (1968). Acta Cryst. B24, 1131.
Hamilton, W. C. (1964). Statistics in Physical Science. New York: Ronald Press.
Hendricks, S. B. \& Dickinson, R. G. (1927). J. Amer. Chem. Soc. 49, 2149.
Itoh, J., Kusaka, R., Yamagata, Y., Kiriyama, R. \& Ibamoto, H. (1953). Physica, 19, 415.
McGrath, J. W. \& Silvidi, A. A. (1961). J. Chem. Phys. 34, 322.
Momin, S. N., Sequeira, A. \& Chidambaram, R. (1969). To be published.
Sequeira, A., Srikanta, S. \& Chidambaram, R. (1970). Acta Cryst. B26, 77.
Sikka, S.K. \& Chidambaram, R.(1969).ActaCryst. B25, 310.
Sikka, S. K., Momin, S. N., Rajagopal, H. \& Chidambaram, R. (1968). J. Chem. Phys. 48, 1883.
Srikanta, S. (1968). Unpublished.
Wehe, D. J., Busing, W. R. \& Levy, H. A. (1962). A Fortran Program for Calculating Single Crystal Absorption Corrections. Oak Ridge National Laboratory Report ORNL-TM-229.
Wyckoff, R. W. G. (1965). Crystal Structures, Vol. III, p. 618. New York: Interscience.

Zalkin, A. (1962). Private communication.

The Crystal Structure of $\mathbf{Z r}_{\mathbf{7}} \mathbf{O}_{\mathbf{9}} \mathbf{F}_{\mathbf{1 0}}$

By Bo Holmberg
Research Institute of National Defence, Department 4, Stockholm 80 and Institute of Inorganic Chemistry, University of Stockholm, Stockholm, Sweden

(Received 7 February 1969)
$\mathrm{Zr}_{7} \mathrm{O}_{9} \mathrm{~F}_{10}$, a new compound prepared from ZrF_{4} and ZrO_{2}, crystallizes in the orthorhombic space group Pbam with the unit-cell dimensions $a=6.443, b=26.851, c=4.071 \AA$. The structure has been refined by the method of least-squares from three-dimensional Weissenberg data. The zirconium atoms are six and seven coordinated and the coordination polyhedra (octahedra and pentagonal bipyramids) are joined by corners and edges in the (001) plane and by corners along the c axis. The structure is related to $\alpha-\mathrm{UO}_{3}$ in much the same way as the orthorhombic $\mathrm{U}_{3} \mathrm{O}_{8}$ structure. From these similarities a building principle for a series of compounds $(M A)_{2(3 n+1)} A_{4(3 n+1)-2 n}$ in which the composition asymptotically approaches the composition $M_{3} A_{8}$ is discussed.

Introduction

Several zirconium oxide fluorides have been observed by Kolditz \& Feltz (1961) in their studies of thermal
decomposition of zirconium tetrafluoride hydrates and zirconium oxide fluoride hydrates. To characterize existing compounds and to determine their structures a reinvestigation of the zirconium oxide fluoride system

[^0]: * Present address: Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay-85, India.
 \dagger Permanent address: Operations Division, Bandung Reactor Centre, Bandung, Indonesia.
 \ddagger Present address: Nuclear Engineering Dept. Tsing Hua University, Taiwan, Republic of China.
 § Present address: Korean Atomic Energy Research Institute Seoul, Korea.

[^1]: * The systematic extinctions are also consistent with the non-centrosymmetric space groups $P \overline{4} n 2$ and $P 4_{2} n m$, in view of which one of the referees has suggested that the authors should re-examine the space group determination. In anisotropic least-squares refinements these space groups would involve 8 and 17 additional parameters respectively. To reject $P 4_{2} / m n m$ in favour of either of these at a significance level of 0.005 would require an improvement in the R index by ratios of 1.08 and 1.12 respectively (Hamilton, 1964). In view of the fact that (a) the structure refined in the space group $P 4_{2} / m n m$ to an R index of 0.039 , (b) there were no anomalous thermal parameters or bond lengths in this refinement and (c) since at worst only small deviations from this are likely to arise in the refinements in the non-centrosymmetric space groups which would become highly non-linear in consequence, we have not considered it worth while to attempt such refinements in the space groups $P \overline{4} n 2$ and $P 4_{2} n m$.

[^2]: * The CDC 3600 version used incorporates modifications by C. K. Johnson and S. Srikanta.

